Abstract

In this paper, we extend the scope of the Tate and Ormerod Lemmas to the Dunkl setting, revealing a profound interconnection that intricately links the Dunkl transform and the Mellin transform. This illumination underscores the pivotal significance of the Mellin integral transform in the realm of fractional calculus associated with differential-difference operators. Our primary focus centers on the Dunkl–Laplace operator, which serves as a prototype of a differential-difference second-order operator within an unbounded domain. Following influential research by Pagnini and Runfola, we embark on an innovative exploration employing Bochner subordination approaches tailored for the fractional Dunkl Laplacian (FDL). Notably, the Mellin transform emerges as a robust and enlightening tool, particularly in its application to the FDL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.