Abstract

We examine a fractional version of the discrete nonlinear Schrödinger (dnls) equation, where the usual discrete laplacian is replaced by a fractional discrete laplacian. This leads to the replacement of the usual nearest-neighbor interaction to a long-range intersite coupling that decreases asymptotically as a power-law. For the linear case, we compute both, the spectrum of plane waves and the mean square displacement of an initially localized excitation in closed form, in terms of regularized hypergeometric functions, as a function of the fractional exponent. In the nonlinear case, we compute numerically the low-lying nonlinear modes of the system and their stability, as a function of the fractional exponent of the discrete laplacian. The selftrapping transition threshold of an initially localized excitation shifts to lower values as the exponent is decreased and, for a fixed exponent and zero nonlinearity, the trapped fraction remains greater than zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.