Abstract

BackgroundChanging population-level exposure to modifiable risk factors is a key driver of changing cancer incidence. Understanding these changes is therefore vital when prioritising risk-reduction policies, in order to have the biggest impact on reducing cancer incidence. UK figures on the number of risk factor-attributable cancers are updated here to reflect changing behaviour as assessed in representative national surveys, and new epidemiological evidence. Figures are also presented by UK constituent country because prevalence of risk factor exposure varies between them.MethodsPopulation attributable fractions (PAFs) were calculated for combinations of risk factor and cancer type with sufficient/convincing evidence of a causal association. Relative risks (RRs) were drawn from meta-analyses of cohort studies where possible. Prevalence of exposure to risk factors was obtained from nationally representative population surveys. Cancer incidence data for 2015 were sourced from national data releases and, where needed, personal communications. PAF calculations were stratified by age, sex and risk factor exposure level and then combined to create summary PAFs by cancer type, sex and country.ResultsNearly four in ten (37.7%) cancer cases in 2015 in the UK were attributable to known risk factors. The proportion was around two percentage points higher in UK males (38.6%) than in UK females (36.8%). Comparing UK countries, the attributable proportion was highest in Scotland (41.5% for persons) and lowest in England (37.3% for persons). Tobacco smoking contributed by far the largest proportion of attributable cancer cases, followed by overweight/obesity, accounting for 15.1% and 6.3%, respectively, of all cases in the UK in 2015. For 10 cancer types, including two of the five most common cancer types in the UK (lung cancer and melanoma skin cancer), more than 70% of UK cancer cases were attributable to known risk factors.ConclusionTobacco and overweight/obesity remain the top contributors of attributable cancer cases. Tobacco smoking has the highest PAF because it greatly increases cancer risk and has a large number of cancer types associated with it. Overweight/obesity has the second-highest PAF because it affects a high proportion of the UK population and is also linked with many cancer types. Public health policy may seek to mitigate the level of harm associated with exposure or reduce exposure levels—both approaches may effectively impact cancer incidence. Differences in PAFs between countries and sexes are primarily due to varying prevalence of exposure to risk factors and varying proportions of specific cancer types. This variation in turn is affected by socio-demographic differences which drive differences in exposure to theoretically avoidable ‘lifestyle’ factors. PAFs at UK country level have not been available previously and they should be used by policymakers in devolved nations. PAFs are estimates based on the best available data, limitations in those data would generally bias toward underestimation of PAFs. Regular collection of risk factor exposure prevalence data which corresponds with epidemiological evidence is vital for analyses like this and should remain a priority for the UK Government and devolved Administrations.

Highlights

  • Risk factors which contribute the most cases to the overall cancer burden are either those with the highest relative risks associated with exposure, those with the highest exposure prevalence in the population, those with the largest number of associated common cancer types, or combinations thereof

  • The male excess in risk factor exposure is generally not offset by the female-only cancer types, with the exceptions of overweight and obesity, infections, and ionising radiation, where Population attributable fractions (PAFs) are higher in females than in males mainly because of sex-specific cancers, some of which have high PAFs

  • Comparison with other relevant studies The results reported here are overall in line with those from similar studies, though methodological differences—different groups of risk factors used, different time periods and different relative risk sources—preclude direct comparisons

Read more

Summary

Introduction

Age-standardised incidence rates for all cancers combined (International Classification of Diseases version 10 [ICD-10]1 C00-C97 excluding C44) have increased by 7% in the UK, with a larger increase in females (8%) than in males (3%).[2,3]Over the two decades, incidence rates for all cancers combined are projected to rise by 2% in the UK; this slower pace of increase is in part due to falling smoking rates since the 1970s, the impact of which will be seen most clearly in future decades.[4]Changes in exposure to risk factors are key drivers of changes in Received: 24 October 2017 Revised: 23 January 2018 Accepted: 23 January 2018 Published online: 23 March 20181234567890();,: cancer incidence, with improvements in cancer diagnosis and data capture contributing to a lesser extent. Risk factors which contribute the most cases to the overall cancer burden are either those with the highest relative risks associated with exposure, those with the highest exposure prevalence in the population, those with the largest number of associated common cancer types, or combinations thereof. Changing population-level exposure to modifiable risk factors is a key driver of changing cancer incidence. Differences in PAFs between countries and sexes are primarily due to varying prevalence of exposure to risk factors and varying proportions of specific cancer types. This variation in turn is affected by socio-demographic differences which drive differences in exposure to theoretically avoidable ‘lifestyle’ factors.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call