Abstract
In the paper the author presents a novel point of view for the refinement and derefinement algorithms of triangular nested meshes using fractal concepts and iterated function systems (IFS). The fractal behaviour can be understood in the sense that these meshes feature a remarkable amplifying invariance under changes of magnification. Here we compare the meshes obtained by the combination of these algorithms with those presented by Bova and Carey (1992). Although both of the meshes are very similar, the current algorithms automatically build and manage sequences of nested irregular discretizations of the domain. The author illustrates here how the application of IFS families is equivalent to the use of an adaptive strategy that combines the refinement procedure with the derefinement one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.