Abstract

We prove a fourth moment bound without remainder for the normal approximation of random variables belonging to the Wiener chaos of a general Poisson random measure. Such a result—that has been elusive for several years—shows that the so-called ‘fourth moment phenomenon’, first discovered by Nualart and Peccati [Ann. Probab. 33 (2005) 177–193] in the context of Gaussian fields, also systematically emerges in a Poisson framework. Our main findings are based on Stein’s method, Malliavin calculus and Mecke-type formulae, as well as on a methodological breakthrough, consisting in the use of carre-du-champ operators on the Poisson space for controlling residual terms associated with add-one cost operators. Our approach can be regarded as a successful application of Markov generator techniques to probabilistic approximations in a nondiffusive framework: as such, it represents a significant extension of the seminal contributions by Ledoux [Ann. Probab. 40 (2012) 2439–2459] and Azmoodeh, Campese and Poly [J. Funct. Anal. 266 (2014) 2341–2359]. To demonstrate the flexibility of our results, we also provide some novel bounds for the Gamma approximation of nonlinear functionals of a Poisson measure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.