Abstract

The adenine nucleotide translocator (ANT) is a mitochondrial bi-functional protein, which catalyzes the exchange of ADP and ATP between cytosol and mitochondria and participates in many models of mitochondrial apoptosis. The human adenine nucleotide translocator sub-family is composed of four isoforms, namely ANT1-4, encoded by four nuclear genes, whose expression is highly regulated. Previous studies have revealed that ANT1 and 3 induce mitochondrial apoptosis, whereas ANT2 is anti-apoptotic. However, the role of the recently identified isoform ANT4 in the apoptotic pathway has not yet been elucidated. Here, we investigated the effects of stable heterologous expression of the ANT4 on proliferation, mitochondrial respiration and cell death in human cancer cells, using ANT3 as a control of pro-apoptotic isoform. As expected, ANT3 enhanced mitochondria-mediated apoptosis in response to lonidamine, a mitochondriotoxic chemotherapeutic drug, and staurosporine, a protein kinase inhibitor. Our results also indicate that the pro-apoptotic effect of ANT3 was accompanied by decreased rate of cell proliferation, alteration in the mitochondrial network topology, and decreased reactive oxygen species production. Of note, we demonstrate for the first time that ANT4 enhanced cell growth without impacting mitochondrial network or respiration. Moreover, ANT4 differentially regulated the intracellular levels of hydrogen peroxide without affecting superoxide anion levels. Finally, stable ANT4 overexpression protected cancer cells from lonidamine and staurosporine apoptosis in a manner independent of Bcl-2 expression. These data highlight a hitherto undefined cytoprotective activity of ANT4, and provide a novel dichotomy in the human ANT isoform sub-family with ANT1 and 3 isoforms functioning as pro-apoptotic while ANT2 and 4 isoforms render cells resistant to death inducing stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.