Abstract

We study Fourier theory on quantum Euclidean space. A modified version of the general definition of the Fourier transform on a quantum space is used and its inverse is constructed. The Fourier transforms can be defined by their Bochner's relations and a new type of q-Hankel transforms using the first and second q-Bessel functions. The behavior of the Fourier transforms with respect to partial derivatives and multiplication with variables is studied. The Fourier transform acts between the two representation spaces for the harmonic oscillator on quantum Euclidean space. By using this property it is possible to define a Fourier transform on the entire Hilbert space of the harmonic oscillator, which is its own inverse and satisfies the Parseval theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.