Abstract

In the modern biomedical image reconstruction literature, the quality of a reconstructed image is often numerically quantified using scalar error measures such as mean-squared error or the structural similarity index. While such measures provide a rough summary of image quality, they also suffer from well-known limitations. For example, a substantial amount of information is necessarily lost whenever the characteristics of a high-dimensional image are summarized by a single number. In this work, we introduce the Fourier radial Error Spectrum Plot (ESP), which provides a novel and more nuanced assessment of error by decomposing the error into its different spatial frequency components. The usefulness of ESP is illustrated in the context of MRI reconstruction from under-sampled data. In addition, we demonstrate that the extra dimension of insight provided by ESP can be used to improve the performance of existing image reconstruction techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.