Abstract
Suppose that $G$ is a simple adjoint reductive group over $\mathbf{Q}$, with an exceptional Dynkin type, and with $G(\mathbf{R})$ quaternionic (in the sense of Gross-Wallach). Then there is a notion of modular forms for $G$, anchored on the so-called quaternionic discrete series representations of $G(\mathbf{R})$. The purpose of this paper is to give an explicit form of the Fourier expansion of modular forms on $G$, along the unipotent radical $N$ of the Heisenberg parabolic $P = MN$ of $G$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.