Abstract

Starting from the motional property of functional field based on the action principle of path integral formulation while proposing maximum coherence motion principle and maximum locally entangled-qubits motion principle as guiding principles, we show that such a functional field as fundamental building block appears naturally as an entangled qubit-spinor field expressed by a locally entangled state of qubits. Its motion brings about the appearance of Minkowski space–time with dimension determined by the motion-correlation [Formula: see text]-spin charge and the emergence of [Formula: see text]-spin/hyperspin symmetry as fundamental symmetry. Intrinsic [Formula: see text]-spin charge displays a periodic feature as the mod 4 qubit number, which enables us to classify all entangled qubit-spinor fields and space–time dimensions into four categories with respect to four [Formula: see text]-spin charges [Formula: see text]. An entangled decaqubit-spinor field in 19-dimensional hyper-space–time is found to be a hyperunified qubit-spinor field which unifies all discovered leptons and quarks and brings on the existence of mirror lepton–quark states. The inhomogeneous hyperspin symmetry [Formula: see text] as hyperunified symmetry in association with inhomogeneous Lorentz-type symmetry [Formula: see text] and global scaling symmetry provides a unified fundamental symmetry. The maximum locally entangled-qubits motion principle is shown to lay the foundation of hyperunified field theory, which enables us to comprehend long-standing questions raised in particle physics and quantum field theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call