Abstract

A network is defined as an undirected graph and a routing which consists of a collection of simple paths connecting every pair of vertices in the graph. The forwarding index of a network is the maximum number of paths passing through any vertex in the graph. Thus it corresponds to the maximum amount of forwarding done by any node in a communication network with a fixed routing. For a given number of vertices, each having a given degree constraint, we consider the problem of finding networks that minimize the forwarding index. Forwarding indexes are calculated' for cube networks and generalized de Bruijn networks. General bounds are derived which show that de Bruijn networks are asymptotically optimal. Finally, efficient techniques for building large networks with small forwarding indexes out of given component networks are presented and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.