Abstract

Metal–insulator–semiconductor Schottky diodes were fabricated to investigate the tunnel effect and the dominant carrier transport mechanism by using current density–voltage (J–V) and capacitance–voltage (C–V) measurements in the temperature range of 295–370 K. The slope of the ln J–V curves was almost constant value over the nearly four decades of current and the forward bias current density J is found to be proportional to Jo (T) exp(AV). The values of Nss estimated from J–V and C–V measurements decreased with increasing temperature. The temperature dependence of the barrier heights obtained from forward bias J–V was found to be entirely different than that from the reverse bias C–V characteristics. All these behaviours confirmed that the prepared samples have a tunnel effect and the current transport mechanism in the temperature range of 295–370 K was predominated by a trap-assisted multi-step tunnelling, although the Si wafer has low doping concentration and the measurements were made at moderate temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.