Abstract
To improve drug treatment in older people, who often present with multimorbidity and related polypharmacy, the FORTA (Fit fOR The Aged) List was developed via a Delphi consensus procedure. As a patient-in-focus listing approach (PILA), it has been clinically validated (VALFORTA trial). Unlike drug-oriented listing approaches (DOLAs), its application requires knowledge of patients' characteristics, including diagnoses and other details. As a drug list with discrete labels, application of FORTA seems particularly amenable to electronic support. An information technology (IT) algorithm was developed to analyze bulk data on International Classification of Diseases (ICD)-coded diseases and Anatomical Therapeutic Chemical (ATC)-coded drugs. FORTA-labeled diagnoses and drugs were used to compute the FORTA score, an automatically generated score that describes medication quality by adding up points assigned for errors related to over- and under-treatment. The algorithm detects mismatches between diagnoses and drugs, suboptimal drugs, omitted drugs, and deficient medication escalation schemes. The read-out produces explanations for each error point. A total of 5603 and 7954 patients ≥ 65years were included from two claims datasets (> 30,000 patients each, public health insurance). The FORTA scores were comparable (mean ± standard deviation 4.29 ± 3.37 vs. 4.17 ± 3.16), and similar to that determined in VALFORTA (pre-intervention 3.5 ± 2.7). Under-treatment was two times more prevalent than over-treatment. The main areas of under-treatment were pain, type 2 diabetes mellitus, and depression, and the main areas of over-treatment were gastrointestinal (proton pump inhibitors), pain (non-steroidal anti-inflammatory drugs), and arterial hypertension (β-blockers). The FORTA score is positively correlated with higher age, a higher Charlson Comorbidity Index, and more frequent hospitalizations. Patients in disease management programs run by public health insurers had higher scores than comparators. The algorithm produces plausible analyses of medication errors in older people, pointing to established areas of therapeutic deficiencies. Though individual recommendations exist, the algorithm cannot employ the full potential of FORTA as important details (e.g., blood pressure values, pain intensity) are not (yet) included. However, it seems capable of detecting medication problems in large cohorts-FORTA-EPI (Epidemiological) is designed to support epidemiological analyses, e.g., on comparisons of large cohorts, interventional impact, or longitudinal trends.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.