Abstract

The formulation of quantum dynamical time correlation functions is examined within the context of the path centroid variable in Feynman path integration. This study builds on the centroid-based approach to equilibrium properties developed in the companion paper. The introduction of the centroid perspective into the calculation of real time position correlation functions is outlined and an intriguing quasiclassical role for the centroid variable in real time position correlation functions is identified. This quasiclassical perspective is developed in terms of general interaction potentials, and the computational effort in implementing the method should scale with the size of the system in the same fashion as a classical molecular dynamics calculation. The centroid-based theory is also implemented in several different approaches to calculate general time correlation functions. The theoretical results are illustrated and tested by representative numerical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call