Abstract

AbstractThe synthesis of bis(formazanate) zinc complexes is described. These complexes have well‐behaved redox‐chemistry, with the ligands functioning as a reversible electron reservoir. This allows the synthesis of bis(formazanate) zinc compounds in three redox states in which the formazanate ligands are reduced to “metallaverdazyl” radicals. The stability of these ligand‐based radicals is a result of the delocalization of the unpaired electron over four nitrogen atoms in the ligand backbone. The neutral, anionic, and dianionic compounds (L2Zn0/−1/−2) were fully characterized by single‐crystal X‐ray crystallography, spectroscopic methods, and DFT calculations. In these complexes, the structural features of the formazanate ligands are very similar to well‐known β‐diketiminates, but the nitrogen‐rich (NNCNN) backbone of formazanates opens the door to redox‐chemistry that is otherwise not easily accessible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call