Abstract

The 133.5 nm lines are important observables for the NASA/SMEX mission Interface Region Imaging Spectrograph (IRIS). To make 3D non-LTE radiative transfer computationally feasible it is crucial to have a model atom with as few levels as possible while retaining the main physical processes. We here develop such a model atom and we study the general formation properties of the C II lines. We find that a nine-level model atom of C I-C III with the transitions treated assuming complete frequency redistribution (CRD) suffices to describe the 133.5 nm lines. 3D scattering effects are important for the intensity in the core of the line. The lines are formed in the optically thick regime. The core intensity is formed in layers where the temperature is about 10kK at the base of the transition region. The lines are 1.2-4 times wider than the atomic absorption profile due to the formation in the optically thick regime. The smaller opacity broadening happens for single peak intensity profiles where the chromospheric temperature is low with a steep source function increase into the transition region, the larger broadening happens when there is a temperature increase from the photosphere to the low chromosphere leading to a local source function maximum and a double peak intensity profile with a central reversal. Assuming optically thin formation with the standard coronal approximation leads to several errors: Neglecting photoionization severly underestimates the amount of C II at temperatures below 16kK, erroneously shifts the formation from 10kK to 25kK and leads to too low intensities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call