Abstract
β-NaYF4 nanocrystals are a popular class of optical materials. They can be doped with optically active lanthanide ions and shaped into core-multi-shell geometries with controlled dopant distributions. Here, we follow the synthesis of β-NaYF4 nanocrystals from α-NaYF4 precursor particles using in situ small-angle and wide-angle X-ray scattering and ex-situ electron microscopy. We observe an evolution from a monomodal particle size distribution to bimodal, and eventually back to monomodal. The final size distribution is narrower in absolute numbers than the initial distribution. These peculiar growth dynamics happen in large part before the α-to-β phase transformation. We propose that the splitting of the size distribution is caused by variations in the reactivity of α-NaYF4 precursor particles, potentially due to inter-particle differences in stoichiometry. Rate equation modeling confirms that a continuous distribution of reactivities can result in the observed particle growth dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.