Abstract

When [3H]myoinositol-prelabeled pancreatic minilobules were incubated with carbamylcholine (CCh) for 30 min, followed by ionophoresis on paper of the aqueous extracts, there were distinct peaks of radioactivity immediately preceding inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3), which, based on earlier studies with inositol 1,2-cyclic phosphate (IcP), are the expected positions for inositol 1,2-cyclic 4-bisphosphate (IcP2) and inositol 1,2-cylic 4,5-trisphosphate (IcP3). These peaks were essentially absent on ionopherograms of extracts from minilobules not incubated with CCh. Similar results were obtained with high performance liquid chromatography (HPLC), except that the putative inositol cyclic phosphate peaks eluted immediately before the non-cyclic inositol polyphosphates, as to be expected. Taking advantage of the unique acid lability of the inositol cyclic phosphates, we demonstrate that the putative inositol cyclic polyphosphate peaks were specifically eliminated by prior hydrolysis of the aqueous extracts, as shown by either ionophoresis or HPLC. After preparative isolation of putative IcP2 and IcP3 by ionophoresis, acid hydrolysis shifted the positions of putative IcP2 and IcP3 peaks to the positions of standard IP2 and IP3, respectively, as shown by either ionophoresis or HPLC. The amounts of IcP, IcP2, and IcP3 formed on CCh stimulation, as measured by ionophoresis, were 0.7, 6.8, and 29.8% of that of, IP, IP2, and IP3, respectively (average of two experiments which agreed within 10%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call