Abstract
Tetracalcium phosphate (TetCP, Ca4(PO4)2O) reacts rapidly with polyacrylic acid (PAA). Complete reaction results in the formation of hydroxyapatite (HAp) and calcium polyacrylate. Consequently, this combination of reactants can react to form a dental cement. However, reaction occurs so rapidly that it would be difficult to achieve a homogeneous mixture of reactants suitable for use in restorations. In order to explore extending the working time, the effects of prehydrating the TetCP to form surface layers of HAp on the TetCP particles was explored. Prehydration was found to be an effective means of allowing workability. Therefore, the effects of the proportions of TetCP and PAA, with and without HAp filler, on cement properties were investigated. The extents of the reactions were investigated by X-ray diffraction analysis; the extents of PAA neutralization were studied by Fourier transform infra-red spectroscopy (FTIR); pore structures were determined by mercury intrusion porosimetry; microstructures were observed by scanning microscopy, and compressive strengths were determined. After curing for 17 days at room temperature PAA neutralization was almost complete; however, residual TetCP could be detected by X-ray diffraction and PAA by FTIR. As expected, the compressive strengths of the cements showed a dependence on the liquid (water+polymer)-to-solid (TetCP+HAp filler) used. The presence of HAp filler caused a significant decrease in compressive strength and increasing the proportion of HAp filler resulted in a decrease in the compressive strength. The characteristics of the load-deflection curves showed a dependence on the presence of HAp filler. In the absence of filler, two slopes were observed in the curves whereas a linear curve, typical of a ceramic, was observed when HAp filler was present. Mercury intrusion porosimetry (MIP) indicated the majority of the porosity was present in pores larger than 0.1 microm. Porosity increased with increasing liquid-to-solids ratio and with an increasing proportion of HAp filler at a constant liquid-to-solids ratio. Microstructural observations indicated the effect of HAp filler on increasing porosity was the result of porosity present in the filler itself. Thus, poorly consolidated HAp filler contributed to increased porosity and reduced compressive strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.