Abstract
Racemic 7-r,8-t-dihydroxy-9-t,10-t-epoxy-7,8,9,10-tetrahydrobenzo[a] pyrene was reacted with yeast RNA. Modified nucleosides were isolated and resolved by high-performance liquid chromatography; nine adduct peaks were collected for analysis. The bases in these adducts were identified by comparing their retention times with those of adducts from poly(G), poly(A), and poly(C). These samples gave two major and two minor Guo adducts, four major Ado adducts, and at least four Cyd adducts. The relative efficiencies of adduct formation with the polyribonucleotides were poly(G) greater than yeast RNA greater than poly(A) greater than poly(C). Fluorescence measurements show that emission from Guo adducts is strongly quenched relative to that from Ado adducts. Liquid secondary ion mass spectrometry (LSIMS) of underivatized samples and electron-impact mass spectrometry (EIMS) of permethyl derivatives were used to confirm the base identities and establish the alkylation sites of the RNA adducts. Unique nitrogen-containing hydrocarbon fragments that were observed with all samples by EIMS establish that in each adduct analyzed the C-10 position of the hydrocarbon is linked to the exocyclic amino group of the base. This suggested that the multiple adducts formed with each base are diastereomers derived from cis/trans epoxide ring opening of the (+) and (-) enantiomers of the carcinogen. Several adducts exhibited molecular ions by both LSIMS and EIMS. Large fragments observed by EIMS usually resulted from the loss of CH3OH, CH3O., CH2O, CH3., and H. from the molecular ion. Major fragmentation pathways also resulted in formation of nucleoside, base, ribose, hydrocarbon, and base-hydrocarbon ions. Each of these major ions in turn resulted in further characteristic fragmentation patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.