Abstract

The formation of low-mass X-ray binaries containing a rather massive ($M \ga 7 M_{\odot}$) black hole is problematic because in most recent stellar evolutionary calculations the immediate progenitors of these black holes (Wolf-Rayet stars) lose so much mass via their stellar wind that their final masses are well below the observed black hole masses. We discuss the recently proposed solution that these binaries are formed through case C mass transfer (i.e. mass transfer after core helium burning is completed), avoiding a long Wolf-Rayet phase and thus significant mass loss. We show that only some of the currently available models for the evolution of massive stars allow this formation channel. We also investigate the effect of the downward revised Wolf-Rayet mass-loss rate as is suggested by observations, and conclude that in that case Wolf-Rayet stars end their lives with significantly higher masses than previously found and may be able to form a black holes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.