Abstract

In the present work, we report a novel bimodal and multi-layered grain structure in pure titanium produced via powder metallurgy. It was found that the hot-extruded pure Ti consists of multiple grain layers, which exhibited substantially different mean grain sizes. The microstructural development during hot extrusion was then investigated for the pure Ti via an interrupted extrusion experiment. The influence of this unique structure on the mechanical properties of the material was also studied under uniaxial quasi-static tension. The experimental results showed that the samples with different arrangement of the grain layers exhibited very different mechanical behavior. Namely, with combining a small part of fine grain layers, the material showed significantly increased yield strength and slightly decreased uniform plastic strain. Yet, the elongation-to-failure was decreased markedly for the multilayered material. Postmortem examinations indicated that this may attribute to the absence of deformation twins in the fine grains that leads to formation of microvoids, which finally develop into large cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.