Abstract

AbstractThe weathering of platinum-group element (PGE) deposits presents unusual problems, especially in the very active environment of lateritic weathering under tropical conditions. There is clear evidence of the destruction of platinum-group minerals (PGM) to form PGE oxides, or fine intergrowths between relict PGM and iron oxides or hydroxides, as an intermediate stage during weathering. The PGE released by weathering are transported in solution with the more soluble Pd species remaining in solution and travelling further than the less soluble Pt species. The presence of PGM in the laterite differing in mineralogy, mineral assemblage and size from those in the primary rock is difficult to explain, especially when they show secondary textures. Differing interpretations have created controversy. Are alluvial PGM derived unaltered from the primary rock where they are rare and, therefore, not encountered by standard petrographic examination? Is it possible that they could have developed in the laterite by some process that we do not yet fully understand? Some favourable genetic conditions have been outlined and debated. For more than 100 years authors have reported secondary ore textures and recently proposed a biogenic origin. Frank Reith and his co-workers provided evidence of a process involving metallophillic bacteria which, for the first time, demonstrates PGM growth in the laboratory under supergene conditions. Their work shows that a mechanism for supergene growth (‘neoformation’) can occur, which offers a new field of study of the appropriate Eh, pH, $f_{{\rm O}_ 2}$ conditions and organic and bacterial reactions that could permit supergene growth.

Highlights

  • Suggestions that the suite of platinum-group minerals (PGM) found in tropical alluvial PGM occurrences differ from the PGM encountered in conventional deposits with an igneous origin have become more convincing in recent years

  • Can new PGM develop under surface conditions? Is PGM formation under surface conditions (‘neoformation’) ‘a scientifically untenable hypothesis’? The huge contribution of Frank Reith and his co-workers was to provide a viable mechanism to explain how PGM growth under surface conditions could occur (Reith et al, 2014, 2016)

  • The PGM from the eluvial deposit in laterite at Yubdo, Ethiopia were examined by Augustithis (1965) and Ottemann and Augustithis (1967) who suggested that they may be secondary in

Read more

Summary

Introduction

Suggestions that the suite of platinum-group minerals (PGM) found in tropical alluvial PGM occurrences differ from the PGM encountered in conventional deposits with an igneous origin have become more convincing in recent years. For most of this time the evidence has been circumstantial, based on occurrence and apparent growth features seen under the microscope. Can new PGM develop under surface conditions? The huge contribution of Frank Reith and his co-workers was to provide a viable mechanism to explain how PGM growth under surface conditions could occur (Reith et al, 2014, 2016).

What is our current understanding?
The eluvial regime
The alluvial regime
The role of organic materials
What could be the trend of future studies?
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call