Abstract

The Hayabusa2 mission returned primitive samples from the C-type asteroid Ryugu to Earth. The C-type asteroids hold clues to the origin of Earth’s water and the building blocks of life. The rubble pile structure of C-type asteroids is a crucial physical feature relating to their origin and evolution. A rubble pile asteroid is hypothesized to be bound primarily by self-gravity with a significant void space among irregularly shaped materials after catastrophic impacts between larger asteroids. However, the geological observations from Hayabusa2 and the analyses of the returned sample from Ryugu revealed that the high microporosity was common to various >10 m- to mm-sized materials of Ryugu, which suggests that the asteroid Ryugu is not just a loosely bound agglomeration of massive rocky debris from shattered asteroids. For a better understanding of the origin and evolution of the rubble pile asteroid, the current most accepted hypothesis should be verified by observations and laboratory analyses and improved upon based on this information. Here, the previous models are examined using Hayabusa2’s geological observations of the asteroid and the analytical data from the samples returned from Ryugu’s surface and subsurface material. Incorporating the new findings, a hypothesis for the evolution of the rubble pile asteroid Ryugu from a cometary nucleus through sublimation and subsequent dynamic resurfacing is proposed. The proposed hypothesis is applicable to other rubble-pile asteroids and would provide perspectives for near-Earth objects in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call