Abstract

The formation of a neo-intima in textile prostheses implanted in the rat and dog aorta was studied by means of light- and scanning electron microscopy. Two independent cellular layers (the superficial and deep ingrowth layers) developed on the free surface and under the fibrin layer initially deposited on the inner surface of the prostheses. The superficial ingrowth layer invades the prosthesis from both the proximal and distal aortic stumps and extends over the primary fibrin layer, or replaces it. This layer consists mainly of smooth muscle cells of the triangular aortic type covered by endothelial-like cells. The deep ingrowth layer originates from cellular elements of the prosthetic bed. Fibroblasts, myofibroblasts and spindle-shaped smooth muscle cells invade the fibrin layer through the interstices of the fabric structure of the prosthesis. Precursors of endothelial cells, however, are absent from this population. The superficial and the deep ingrowth layers may become joined by progressive replacement of the fibrin layer, but remain distinguishable because of their different cellular components. When a continuous cellular layer is established on the inner surface of the prosthesis, and this is then covered by endothelial-like cells, the neo-intima formed remains stable during long-term studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call