Abstract
Carbon dots (CDs), as a kind of zero-dimensional nanomaterials, have been widely synthesized by bottom-up methods from various precursors. However, the formation mechanism is still unclear and controversial, which also brings difficulty to the regulation of structures and properties. Only some tentative formation processes were postulated by analyzing the products obtained at different reaction times and temperatures. Here, the effect of crosslinking on the formation of carbonized polymer dots (CPDs) is explored. Crosslinking-induced nucleation and carbonization (CINC) is proposed as the driving force for the formation of CPDs. Under hydrothermal synthesis, the precursors are initiated to polymerize and crosslink. The crosslinking brings higher hydrophobicity to generate the hydrophilic/hydrophobic microphase separation, which promotes dehydration and carbonization resulting in the formation of CPDs. Based on the principle of CINC, the influence factors of size are also revealed. Moreover, the dissipative particle dynamics (DPD) simulation is employed to support this formation mechanism. This concept of CINC will bring light to the formation process of CPDs, as well as facilitate the regulation of CPDs' size and photoluminescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.