Abstract

AbstractMost stars form in dense star clusters deeply embedded in residual gas. These objects must therefore be seen as the fundamental building blocks of galaxies. With this contribution some physical processes that act in the very early and also later dynamical evolution of dense stellar systems in terms of shaping their later appearance and properties, and the impact they have on their host galaxies, are highlighted. Considering dense systems with increasing mass, it turns out that near 106M⊙ their properties change fundamentally: stellar populations become complex, a galaxial mass–radius relation emerges and the median two-body relaxation time becomes longer than a Hubble time. Intriguingly, only systems with a two-body relaxation time longer than a Hubble time show weak evidence for dark matter, whereby dSph galaxies form total outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.