Abstract

In this study, 3- or 4-h high time-resolved PM2.5 was observed during a severe winter haze-fog event (1 to 6 January 2017) to investigate the formation and evolution of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated polycyclic aromatic hydrocarbons (OPAHs) in Xi'an, a typical city in northwestern China. Three episodes (episode I, episode II, and rainy day (EI, EII, and RD)) have been identified during this haze-fog event. Nine water-soluble ions, 8 carbonaceous fractions, 18 pPAHs, and 3 OPAHs in PM2.5 were measured. pPAHs showed two peaks at around 12:00 local standard time (LST) and 24:00 LST and two troughs at around 2:00 LST and 18:00 LST during EI. However, the OPAHs presented highest at around 18:00 LST and lowest at around 2:00 LST. During EII, pPAHs and OPAHs displayed similar diurnal variations with the highest values at noon but lowest values at around 2:00-5:00 LST.In addition, no obvious diurnal variations of pPAHs and OPAHs were observed during RDwere absent during RD. Diurnal variations of pPAH ring distributions demonstrated coal combustion, and vehicle emissions contributed to pPAHs for three episodes, which is further confirmed by diagnostic ratio results. High oxygenation (Ro) rates were found during the sampling time, which favored OPAH formation. The study herein indicates that OPAH formation through complex atmospheric reactions provides us new insights into the severe haze-fog events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.