Abstract

The formation of superheavy nuclei in 48Ca+232Th, 238U, 242,244Pu and 248Cm reactions and their subsequent decay are studied within the quantum mechanical fragmentation theory (QMFT) and the QMFT-based preformed cluster decay model (PCM) of Gupta and collaborators. According to QMFT, all these 48Ca-induced reactions are cold fusion reactions with relative excitation energies larger than those for the Pb-induced cold fusion reactions and smaller than those for the lighter beam, i.e. Mg, Si or S-induced hot fusion reactions. The same reactions were first suggested by Gupta et al in 1977 on the basis of QMFT, and this study re-establishes the same result. In fact, for such heavy isotopes of Z = 110 to 116, 50Ca is shown to be a better beam for cold fusion, but 50Ca is a radioactive nucleus. The α-decay half-lives of these nuclei after 3n and/or 4n evaporations, i.e. of the evaporation residues of these compound systems, calculated on PCM compare reasonably well with the experiments published by the Dubna group and another recent calculation. As expected for such rare decays, PCM calculations show that the α-preformation factors are small, ∼10−8 to 10−10. The possible competition of α-decays with heavy cluster emissions from these superheavy nuclei is also probed from the point of view of searching for new nuclear structure information and possible future experiments with such exotic nuclei. The decay half-lives for some clusters are in fact shown to be lower than the limits of experiments for nuclei with enough available atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call