Abstract

AbstractWe consider consciousness attributed to systems in space-time which can be purely physical without biological background and focus on the mathematical understanding of the phenomenon. It is shown that the set theory based on sets in the foundations of mathematics, when switched to set theory based on ZFC models, is a very promising mathematical tool in explaining the brain/mind complex and the emergence of consciousness in natural and artificial systems. We formalise consciousness-supporting systems in physical space-time, but this is localised in open domains of spatial regions and the result of this process is a family of different ZFC models. Random forcing, as in set theory, corresponds precisely to the random influence on the system of external stimuli, and the principles of reflection of set theory explain the conscious internal reaction of the system. We also develop the conscious Turing machines which have their external ZFC environment and the dynamics is encoded in the random forcing changing models of ZFC in which Turing machines with oracles are formulated. The construction is applied to cooperating families of conscious agents which, due to the reflection principle, can be reduced to the implementation of certain concurrent games with different levels of self-reflection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call