Abstract

Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K.

Highlights

  • Cell types with more than one nucleus are relatively rare in our body

  • All cell types stained positive for tartrate-resistant acid phosphatase (TRAcP) activity, but staining intensity varied per cell type

  • TRAcP staining was less intense for Foreign body multinucleated giant cells (FBGCs) compared to osteoclasts (Fig 1a), but more intense than that of the mononuclear cells (Fig 1c and 1d)

Read more

Summary

Introduction

Under physiological conditions three different cell types are recognized with more than one nucleus: (i) skeletal muscle cells, (ii) the syncytiotrophoblast of the mature placenta, and (iii) the osteoclast. Multinuclearity is considered to be beneficial for the functioning of these different cell types It allows rapid coordination of muscle fiber contraction along the whole length of the muscle fiber, protects the placenta from invading immune cells which can trigger an immune response [2], and it enables the osteoclast to be more efficient in resorbing mineralized tissues [4]. Under certain pathological conditions a different type of multinucleated cell can be formed: the FBGC This cell type originates, like the osteoclast, from fusion of monocytes/macrophages [5]. The formation of FBGCs occurs at the surface of foreign materials, like implants. Whether formation of FBGCs occurs depends on the material used as well as its shape, size, surface chemistry, roughness, morphology and design [6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.