Abstract

Acoustical Driving Forces (ADF), induced by propagating waves in a homogeneous and inhomogeneous lossy fluid (suspension), are determined and compared depending on the concentration of suspended particles. Using integral equations of the scattering theory, the single particle (inclusion) ADF was calculated as the integral of the flux of the momentum density tensor components over the heterogeneity surface. The possibility of negative ADF was indicated. Originally derived, the total ADF acting on inclusions only, stochastically distributed in ambient fluid, was determined as a function of its concentration. The formula for the relative increase in ADF, resulting from increased concentration was derived. Numerical ADF calculations are presented. In experiments the streaming velocities in a blood-mimicking starch suspension (2 μm radius) in water and Bracco BR14 contrast agent (SF6 gas capsules, 1 μm radius) were measured as the function of different inclusions concentration. The source of the streaming and ADF was a plane 2 mm diameter 20 MHz ultrasonic transducer. Velocity was estimated from the averaged Doppler spectrum obtained from originally developed pulsed Doppler flowmeter. Numerical calculations of the theoretically derived formula showed very good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.