Abstract
In this study, the forced vibration of cylinders reinforced by carbon nanotubes (CNTs) under a moving load is estimated based on the theory of oscillations. The composite cylinders reinforced with CNTs of infinite length subjected to combined action of the internal pressure and ring‐shaped compressive pressure with constant velocity. Here, we consider uniform and nonuniform reinforcement distributions, with the mechanical properties varying linearly throughout the thickness and the effective material properties are estimated by employing the extended rule of mixture. Following the formulation of the problem, the basic equations are derived and then solved in order to determine the maximum static and dynamic deflections, dynamic factors, and critical velocity of composite cylinders reinforced with CNTs. After checking the reliability of the proposed formulation and the accuracy of the results in accordance with the available literature, a systematic study is aimed at checking the sensitivity of the dynamic response to the geometry, velocity, type of distribution, and volume fraction of CNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.