Abstract

We present a general theory for determining the force (and torque) exerted on a boundary (or body) in active matter. The theory extends the description of passive Brownian colloids to self-propelled active particles and applies for all ratios of the thermal energy $k_{B}T$ to the swimmer’s activity $k_{s}T_{s}={\it\zeta}U_{0}^{2}{\it\tau}_{R}/6$, where ${\it\zeta}$ is the Stokes drag coefficient, $U_{0}$ is the swim speed and ${\it\tau}_{R}$ is the reorientation time of the active particles. The theory, which is valid on all length and time scales, has a natural microscopic length scale over which concentration and orientation distributions are confined near boundaries, but the microscopic length does not appear in the force. The swim pressure emerges naturally and dominates the behaviour when the boundary size is large compared to the swimmer’s run length $\ell =U_{0}{\it\tau}_{R}$. The theory is used to predict the motion of bodies of all sizes immersed in active matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.