Abstract

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved.

Highlights

  • the model considers an actin filament that can bind to a given number of fibronectin ligands

  • Fibronectin molecules are all connected in parallel to the substrate

  • The simulation begins with all clutches disengaged

Read more

Summary

Methods

Mouse embryonic fibroblasts (MEFs) were cultured as previously described[67], using Dulbecco’s modified eagle medium (DMEM, ThermoFisher Scientific, 41965-039) supplemented with 10% FBS (ThermoFisher Scientific, 10270-106) and 1% penicillin–streptomycin (ThermoFisher Scientific, 10378-016), and 1.5% HEPES 1M (Sigma Aldrich, H0887). Talin 1−/− MEFs were cultured as previously described[68], using DMEM supplemented with 15% FBS, 1% penicillin–streptomycin, and 1.5% HEPES 1 M. Primary human small airway epithelial cells (SAEC, ATCC® PCS-301-010TM) were purchased from ATCC, cultured in Airway Epithelial Cell Basal Medium (ATCC® PCS-300-030TM) supplemented with Bronchial Epithelial Cell Growth Kit (ATCC® PCS-300-040TM) and 1% penicillin–streptomycin. Primary human lung microvascular endothelial cells (HMVEC, CC-2527) were purchased from Lonza,cultured using Vascular Cell Basal Medium (ATCC® PCS-100-030), supplemented with Microvascular Endothelial Cell Growth Kit-VEGF (ATCC® PCS-110-041) and 12.5 μg/mL blasticidine. Media for optical tweezers experiments was supplemented with Rutin (ThermoFisher Scientific, 132391000) 10 mg/L right before the experiment

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.