Abstract

The presence of liquid bridges between particles in a wet granular media gives rise to capillary forces at the microscopic scale that dramatically alters the material's microstructure and macroscopic responses. Previous experimental studies show significant differences in the penetration depth of the projectile into assemblies of dry or wet particles. Still, there is a lack of fundamental understanding of the difference induced by the presence of liquid bridges in dynamic regimes. In this study, the contact model parameters of wet glass beads are calibrated employing the angle of repose tests and cylinder lifting tests, and a series of three-dimensional discrete element method simulations of spheres impact into wet granular packings are conducted. The dynamic characteristics of the projectile are obtained numerically and found to be in good agreement with the experimental data. The analyses indicate that the final penetration depth in the wet granular media is linearly related to the initial velocity and has a power function relationship with the impact energy. The generalized Poncelet law is suitable for wet granular materials, but the presence of liquid significantly affects the values of the parameters. There is a velocity “stagnation zone” at the initial stage of the wet granular impact, and the final penetration depth and the duration interaction time are smaller than that of the dry case. The difference can be attributed to the resistance evolution of the projectile exerted by particles and gives the parameter scaling law of the peak impact force. Further, a macro-micro transition technique is employed to characterize the velocity field, pressure field, and stress field inside the wet granular media and the spatial distribution is quantified based on stress theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call