Abstract

Exposure to arsenic (AS) causes abnormalities in the reproductive system; however, the precise cellular pathway of AS toxicity on steroidogenesis in developing F1-male mice has not been clearly defined. In this study, paternal mice were treated with arsenic trioxide (As2O3; 0, 0.2, 2, and 20ppm in drinking water) from 5weeks before mating until weaning and continued for male offspring from weaning until maturity (in vivo). Additionally, Leydig cells (LCs) were isolated from the testes of sacrificed F1-intact mature male mice and incubated with As2O3 (0, 1, 10, and 100μM) for 48h (in vitro). Biomarkers of mitochondrial impairment, oxidative stress, and several steroidogenic genes, including the steroidogenic acute regulatory (StAR) protein, cytochrome P450 side-chain cleaving enzyme (P450scc; Cyp11a), 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β-hydroxysteroid dehydrogenase (17β-HSD), were evaluated. High doses of As2O3 interrupted testosterone (T) biosynthesis and T-related gene expression in these experimental models. Altogether, overconsumption of As2O3 can cause testicular and LC toxicity through mitochondrial-related pathways and oxidative stress indices as well as downregulation of androgenic-related genes in mice and isolated LCs. These results could lead to the development of preventive/therapeutic procedures against As2O3-induced reproductive toxicity. Graphical Abstract Mohammad Mehdi Ommati and Reza Heidari contributed equally to this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.