Abstract
An increasing number of proteins are being discovered with a remarkable and somewhat surprising feature, a knot in their native structures. How the polypeptide chain is able to “knot” itself during the folding process to form these highly intricate protein topologies is not known. Here we perform a computational study on the 160-amino-acid homodimeric protein YibK, which, like other proteins in the SpoU family of MTases, contains a deep trefoil knot in its C-terminal region. In this study, we use a coarse-grained Cα-chain representation and Langevin dynamics to study folding kinetics. We find that specific, attractive nonnative interactions are critical for knot formation. In the absence of these interactions, i.e., in an energetics driven entirely by native interactions, knot formation is exceedingly unlikely. Further, we find, in concert with recent experimental data on YibK, two parallel folding pathways that we attribute to an early and a late formation of the trefoil knot, respectively. For both pathways, knot formation occurs before dimerization. A bioinformatics analysis of the SpoU family of proteins reveals further that the critical nonnative interactions may originate from evolutionary conserved hydrophobic segments around the knotted region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.