Abstract

Many verbal theories describe working memory (WM) in terms of physical metaphors such as information flow or information containers. These metaphors are often useful but can also be misleading. This article contrasts the verbal version of the author's three-embedded-component theory with a computational implementation of the theory. The analysis focuses on phenomena that have been attributed to the focus of attention in WM. The verbal theory characterizes the focus of attention by a container metaphor, which gives rise to questions such as: how many items fit into the focus? The computational model explains the same phenomena mechanistically through a combination of strengthened bindings between items and their retrieval cues, and priming of these cues. The author applies the computational model to three findings that have been used to argue about how many items can be held in the focus of attention (Oberauer and Bialkova, 2009; Gilchrist and Cowan, 2011; Oberauer and Bialkova, 2011). The modeling results imply a new interpretation of those findings: The different patterns of results across those studies don't imply different capacity estimates for the focus of attention; they rather reflect to what extent retrieval from WM is parallel or serial.

Highlights

  • There is broad agreement that representations in working memory (WM) are not all equal

  • The analysis focuses on phenomena that have been attributed to the focus of attention in WM

  • The author applies the computational model to three findings that have been used to argue about how many items can be held in the focus of attention (Oberauer and Bialkova, 2009; Gilchrist and Cowan, 2011; Oberauer and Bialkova, 2011)

Read more

Summary

INTRODUCTION

There is broad agreement that representations in working memory (WM) are not all equal. The item-selection module in declarative WM implements the region of direct access and the focus of attention in the threeembedded components model. It serves to represent a single memory set, that is, a set of items bound to their specific contexts. The content of the focus of attention is typically limited to a single item-context conjunction, but this limitation arises not from a capacity limit in the system, but from functional considerations: in many cognitive tasks, the function of the focus of attention is to selectively represent one item and one context, so that the item can be exclusively bound to its context at encoding, and the item can be exclusively selected as output at retrieval (Oberauer and Hein, 2012) We implemented this strong selectivity by two processing assumptions: Whenever encoding or retrieval of an item has come to completion, the activation in the item layer is entirely cleared. As I will explain our work with the connectionist model sketched above resulted in a new explanation for the object-switch cost, which is not applied to the dual-access paradigm of Oberauer and Bialkova (2009)

A COMPUTATIONAL EXPLANATION OF OBJECT-SWITCH EFFECTS IN WORKING MEMORY
Findings
DISCUSSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.