Abstract

We consider the two-variable fragment FO^2[<] of first-order logic over finite words. Numerous characterizations of this class are known. Th\'erien and Wilke have shown that it is decidable whether a given regular language is definable in FO^2[<]. From a practical point of view, as shown by Weis, FO^2[<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO^2[<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids. Our result implies that there are many different ways of climbing up the FO^2[<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J-trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Th\'erien, and Vollmer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.