Abstract

This article describes an unexpected phenomenon encountered during MD simulations: velocity rescaling using standard protocols can systematically change the proportion of total kinetic energy (KE) found in motions associated with the various degrees of freedom. Under these conditions, the simulation violates the principle of equipartition of energy, which requires a mean kinetic energy of RT/2 in each degree of freedom. A particularly pathological form of this problem occurs if one does not periodically remove the net translation of (and rotation about) the center of mass. In this case, almost all of the kinetic energy is converted into these two kinds of motion, producing a system with almost no kinetic energy associated with the internal degrees of freedom. We call this phenomenon “the flying ice cube.” We present a mathematical analysis of a simple diatomic system with two degrees of freedom, to document the origin of the problem. We then present examples from three kinds of MD simulations, one being an in vacuo simulation on a diatomic system, one involving a low resolution model of DNA in vacuo, and the third using a traditional all-atom DNA model with full solvation, periodic boundary conditions, and the particle mesh Ewald method for treating long-range electrostatics. Finally, we discuss methods for avoiding the problem. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 726–740, 1998

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.