Abstract

Iron is an important nutrient in the ocean, but the different sources and sinks of iron are not well constrained. Here, we use measurements of Fe concentration and Fe stable isotope ratios to evaluate the importance of reducing continental margins as a source of Fe to the open ocean. Dissolved iron concentration ([Fe]) and iron stable isotope ratios (δ56Fe) were measured in the San Pedro and Santa Barbara basins. Dissolved δ56Fe ranges from −1.82‰ to 0.00‰ in the San Pedro Basin and from −3.45‰ to −0.29‰ in the Santa Barbara Basin, and in both basins the lowest δ56Fe values and highest Fe concentrations are found at the bottom of the basin reflecting the input of isotopically light Fe from reducing sediment porewaters. In the San Pedro Basin, we are also able to fingerprint an advective source of Fe from shallow continental shelves next to the basin and the atmospheric deposition of Fe into surface waters. A one-dimensional model of the Fe isotope cycle has been constructed for the deep silled San Pedro Basin. By fitting model output to data, values of several important iron cycle parameters are predicted including a flux of Fe from sediment porewaters into the water column of 0.32–1.14μmolm−2d−1, a first-order dissolved Fe precipitation rate constant of 0.0018–0.0053d−1, a flux δ56Fe of −2.4‰, and an isotope effect for Fe precipitation of Δδ56Feparticulate-dissolved=−0.8‰. Applying our model-predicted Fe cycle parameters to the global ocean suggests that continental margins contribute 4–12% of world ocean dissolved Fe and make the ocean’s Fe lighter by −0.08‰ to −0.26‰. The dramatically negative δ56Fe signature seen in the water column of the San Pedro and Santa Barbara basins demonstrate the utility of Fe isotopes as a tracer for continental margin Fe input from reducing sediments to the oceans, while the isotopic fractionation observed during loss of Fe from the dissolved phase suggests that this signature will be modified by subsequent reactions. Our modeling provides an initial framework for testing how these signals are transmitted into the open ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call