Abstract

The multiple photon excitation and dissociation of SF6 and hydrogen mixtures is measured by using simultaneously pulsed optoacoustic detection to monitor the energy deposition and time resolved HF fluorescence to monitor the production of vibrationally hot HF. From these studies we deduce that at least three mechanisms lead to production of vibrationally excited HF. One mechanism produces free F from the unimolecular laser-induced decomposition of SF6. The second mechanism involves the reaction between two vibrationally hot SF6 molecules to produce free F. In both of these cases the F atom subsequently react with H2 to produce vibrationally hot HF. The third involves the reaction between a vibrationally hot SF6 molecule and a hydrogen molecule producing vibrationally hot HF directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.