Abstract

AbstractThis paper studies the asymptotic equivalence of the Broadwell model of the nonlinear Boltzmann equation to its corresponding Euler equation of compressible gas dynamics in the limit of small mean free path ε. It is shown that the fluid dynamical approximation is valid even if there are shocks in the fluid flow, although there are thin shock layers in which the convergence does not hold. More precisely, by assuming that the fluid solution is piecewise smooth with a finite number of noninteracting shocks and suitably small oscillations, we can show that there exist solutions to the Broadwell equations such that the Broadwell solutions converge to the fluid dynamical solutions away from the shocks at a rate of order (ε) as the mean free path ε goes to zero. For the proof, we first construct a formal solution for the Broadwell equation by matching the truncated Hilbert expansion and shock layer expansion. Then the existence of Broadwell solutions and its convergence to the fluid dynamic solution is reduced to the stability analysis for the approximate solution. We use an energy method which makes full use of the inner structure of time dependent shock profiles for the Broadwell equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.