Abstract

Knowledge of the flowering dates of black locust trees (Robinia pseudoacacia L.) is crucial information of both economic significance and scientific interest. Black locust is in fact an excellent melliferous plant and can provide information on climate change impacts due to its large distribution throughout the world as planted and naturalized trees. This paper presents the calibration and validation of a phenological model targeted at the simulation of the whole process of black locust flowering (from BBCH 51—inflorescence of flower buds visible—to BBCH 69—end of flowering). The work relies on the phenological observations gathered in the context of IPHEN, the Italian PHEnological Network, with a broad latitudinal distribution of the observational sites (from 37.53° to 46.28° N) and a long time span, from 2010 to 2021. Phenology modeling is based on the Normal Heat Hours approach, which translates air temperature into thermal units based on a plant specific response curve. As meteorological input data, a high resolution (0.045°) gridded dataset was obtained by spatial interpolation of GSOD (NOAA) weather stations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call