Abstract
The results of a numerical calculation of a symmetric flow of supersonic gas with the Mach number M=3 past the windward side of V-shaped wings with an opening angle γ=40° and apex angles β=30, 45, and 90° are given. The possibility of the ascent of one or two Ferri points from the break point of the transverse contour of the wing is discovered and explained. It is shown that conical flow near wings of finite length need not exist in flow regimes corresponding to angles of attack α at which a Ferri point ascends, while at angles of attack smaller and larger than a certain interval, conical flow will exist. The investigation is conducted by means of a numerical method of stabilization with an artificial viscosity. The longitudinal coordinate, relative to which the steady system of equations is hyperbolic, played the part of the time variable, usual for methods of stabilization. The numerical method constructed using the scheme of [1] is described in [2] and was successfully applied to the calculation of different regimes of supersonic flow past conical wings with supersonic leading edges [2–6]. In. the present investigation the calculation algorithm of [2] is modified and makes it possible to realize motion with respect to the parameter a, this being particularly important for the stabilization of the solution in the calculation of flow regimes for which regions with a total velocity Mach number close to unity arise in the flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.