Abstract

Rubber products like oil seal are produced by vulcanization molding and the vulcanization molding of rubber product is performed by past experience, trial and error. It is important issues to decrease the product cost, reduce defective products and solve the environmental problems by saving natural resources. If the vulcanization moldings of rubber products are reappeared by computer simulation, it is very useful and it could contribute to solve the above problems. In order to reduce surplus rubber and defective products, numerical analysis of flow phenomena of unvulcanized rubber was performed using commercial software FIDAP. In several types of rubber mold model, the numerical analysis was conducted taken the characteristic of visco-elasticity fluid obtained by an experiment without considering the effect of heat. And experiments were conducted for the comparison of numerical results and actual phenomena. In the experiment, vulcanization process was stopped by arbitrary interval. Then the filling state and the shape of the rubber at each interval are observed in numerical and experiment results. The results showed that the filling state of numerical results represented good agreement with the experimental results. And it was clarified from the numerical analysis that shear stress increased when the unvulcanized rubber flowed in a narrow channel and there was the relation between pressure and velocity. In the present paper, the flow phenomena under the condition of the compression molding are shown and the optimum flow conditions are discussed from the numerical results. Furthermore mechanism of occurrence of defective products is considered with the experimental and the numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call