Abstract

Steady two-dimensional non-Newtonian second grade fluid is studied under the influence of temperature dependent viscosity and thermal conductivity. The viscosity is assumed to vary inversely as linear function of temperature while the thermal conductivity varies directly as linear function of temperature. Also, effects of radiative heat, viscous dissipation and heat source/sink are considered in the energy equation. The basic governing partial differential equations for the velocity and temperature are transformed to ordinary differential equations (ODEs) using appropriate similarity variables. These coupled nonlinear ODEs have been solved approximately subject to appropriate boundary conditions by Runge–Kutta shooting technique. The quantitative effects of emerging dimensionless physical parameters on the velocity, temperature, skin friction and heat transfer rate are displayed graphically. The numerical investigation of the variable thermo-physical properties of a second grade fluid over a stretching sheet provides an extension to previous work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.