Abstract

AbstractA non‐Newtonian fluid's Poiseuille flow in a porous medium with variable inclination and permeability is investigated. Let us assume for the sake of simplification that permeability varies as a quadratic parabolic function form. The porous medium is used by the Brinkman methodology to control the flow. The equations for velocity distribution and mass flow that result from this are evaluated using different input values. This problem describes the effect of inclination, Jeffrey parameter, and variable permeability on the classical Poiseuille flow between parallel plates. This problem can also be treated as an extension of the work of Hamdan and Kamel for non‐Newtonian fluid flow in an inclined channel. Also, the effects of these variables on the variation of mass flux with Jeffrey parameter λ1 is analyzed through graphs, and the skin friction coefficient is analyzed through table values. It is observed that the maximum permeability of the porous medium affects both the mass flow rate and the velocity, which increase with rising λ1 and decrease with rising Ha, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.