Abstract

Inhaled fibres can potentially cause inflammation of the lung tissue and interstitium which, after long-term exposure, may lead to lung cancer, malignant mesothelioma or pulmonary and pleural fibrosis. For risk reduction and correct setting of occupational hygiene regulations, it is important to be able to precisely calculate the fate of inhaled fibres depending on their physical characteristics and inhalation conditions. As there is a lack of experimental data on the orientation of fibres, a new test rig has been assembled for visualization and recording of flowing fibres in a replica of the human trachea. Fibres prepared from regular glass fibres produced commercially for blown thermal insulation have been processed, dispersed and introduced into the glass tube with dimensions of the trachea. Visualization was performed using a powerful LED light and a high-speed camera. Angles of the fibres have been evaluated for six different flowrates and the dependence of the angles on the flow Reynolds number was searched for. The angles of fibres agreed with expected values, i.e. only vertically and horizontally oriented fibres were recorded. However, the number of vertically and horizontally oriented fibres did not seem to be correlated with the flow Reynolds number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.